מרכז דימות ומיקרוסקופיה מרכז תשתיות ביורפואי

The Ruth & Bruce Rappaport Faculty of Medicine Technion-Israel Institute of Technology

Imaging and Microscopy Center

Biomedical Core Facility

2/11/2015 Instructions LSM 700 20150211.docx

הפקולטה לרפואה ע"ש רות וברוך רפפורט הטכניון - מכון טכנולוגי לישראל

ברכה – LSM 700 – מערך הדרכה

כל פרויקט חדש יש להפנות לעדית. אין לבצע הדרכה ללא שיחה מקדימה עם עדית.

חובה בתחילת ההדרכה להבין את השאלה המחקרית של המשתמש, סוג התאים.תכשיר וצביעות, סוגי הצבענים במדויק. המשתמש צריך להביא עמו עקומות עירור ופליטה של הצבענים בהם הוא משתמש. יש בנוסף לוודא כי המשתמש מכין את כל הביקורות הדרושות

ביקורות:

- תכשיר ללא צביעה לאחר כל תהליכי הקיבוע (1
- 2) תכשיר עם נוגדנים שניוניים בלבד ביחד וכל אחד בנפרד

 בצביעות משולבות יש בתחילת כל ניסוי חדש, לבדוק כל צביעה בנפרד, ביקורת של כל הנוגדנים השניוניים יחד כנגד כל ראשוני.

המערכת מורכבת ממערכת קונפוקלית המחוברת למיקרוסקופ upright פלורסנטי מדגם AxioImager 7.2 המצויד בשולחן ממונע.

רכיבי המערכת

Electronic Unit – Laser Module .1

בתוך יחידה זו נמצאים ארבעת הלייזרים, חלקי אלקטרוניקה ומחשב.

סוגי לייזרים

הלייזרים אינם זקוקים לאוורור מיוחד או הדלקה מעבר לפעולת בחירתם בתוכנה, אין צורך לכבותם בגמר השימוש. כל לייזר עובר באופן עצמוני למצב Standby לאחר 15 דקות בהן לא נמצא בשימוש. כל לייזר מועבר מיחידת הלייזרים בסיב אופטי נפרד אל יחידת ה- Scanhead.

הספק	אורכי גל	
5mW	633 nm	Solid state laser cassette
10mW	555 nm	Solid state laser cassette
10mW	488 nm	Solid state laser cassette
5mW	405 nm	Solid state laser cassette

Scanhead .2

חלק זה הינו החלק המרכזי במערכת. הוא כולל בתוכו מראות המכוונות את נתיב הארה, מראה דיכרואית ראשונית, יחידת מראות הגלוונומטר, חריר קונפוקלי יחיד, Beamsplitter, גלגלי פילטרים ו - 2 יחידות PMT לדיטקצית סיגנל.

וודועה

3. מיקרוסקופ

Zeiss AxioImager 7.2 (upright)

א. עדשות

(במערכת אין עדשות phase - ניתן להעביר) ממערכות Time Lapse)

Innersion		בתווזין עבוויו	עוב וכוכ ונ			ערטוו
Air	DIC I	5.2 mm	0.17mm	0.3	x10	EC Plan Neofluar
Air	DIC II	0.55 mm	0.17mm	0.8	x20	Plan Apochromat
Oil Glycerin Water	DIC II	0.57 mm	0-0.17 mm	0.8	x25	LD LCI Plan Apochromat
Oil	DIC III	0.21 mm	0.17 mm	1.3	x40	EC Plan Neofluar
Water		2.5 mm	0	1.0	x40	W Plan Apochromat
ניתן להוסיף למערכת						
Oil	DIC III	0.19 mm	0.17 mm	1.4	x63	Plan Apochromat

בנדלב NA עובו זכובות מכסד עבודב DIC בונדנסוב

Immoreion

- **ב. תאורה** להסתכלות דרך העיניות. transmitted הלוגן לאור
- ג. גלגל פילטרים להסתכלות דרך העיניות.

דוגמאות לצבענים	פליטה	מראה דיכרואית	עירור	קובית פילטר	עמדה
Cy2, GFP, Alexa 488	BP 525/50	FT 495	BP 470/40	Zeiss Filter set 38	Set38
Cy3, Rhodamin, Alexa 561	BP 605/70	FT 570	BP 545/25	Zeiss Filter set 43	Set43
PI, Cy5	BP 630/75	FT 585	BP 560/40	Zeiss Filter set 45	Set45
DAPI, Hoechst	BP 445/50	FT 395	G 365	Zeiss Filter set 49	Set49
				DIC Analyzer	Nalyze
				ריק	None 📎

Biomedical Core Facility Biomedical Core Facility The Ruth & Bruce Rappaport Faculty of Medicine Technion-Israel Institute of Technology www.medicinelab.org.il

ד. שולחן ממונע

השולחן (stage) ממונע ע"י ספק כח ונשלט ע"י ג'ויסטיק. בלחיצה על הכפתור עוברים למצב תנועה גסה/עדינה.

ה. קונדנסור ידני

יש להתאים את הקונדנסור לסוג הניגודיות בה אנו רוצים לעבוד באור .transmitted

פילטר קונדנסור	שיטת ניגודיות	עדשה
Н	brightfield	כל העדשות
1	phase	x10
I	DIC	x10
2	phase	x20
II	DIC	x20 x25
3	phase	x60, x100
III	DIC	x40, x63, x100
D	darkfield	

Imaging and Microscopy Center Biomedical Core Facility The Ruth & Bruce Rappaport Faculty of Medicine Biomedical Core Facility Technion-Israel Institute of Technology www.medicinelab.org.il

ו. מסך מגע לשליטה במיקרוסקופ

פעולות רבות במיקרוסקופ ניתנות לשליטה ממסך המגע

- בחירת עדשות.
- בחירת מיקום בגלגל הפילטרים.
- סגירה ופתיחה של תריסי האור הפלורוסנטי וה- transmitted.

Imaging and Microscopy Center Biomedical Core Facility The Ruth & Bruce Rappaport Faculty of Medicine Technion-Israel Institute of Technology www.medicinelab.org.il

4. מחשב + תוכנת ZEN 2010

לתוכנת Zen יש גרסה חינמית כדי לפתוח ולעבד קבצים שנרכשו במערכת: http://www.zeiss.com/microscopy/en_de/products/microscope-software/zen-lite.html

Transmitted לאור PMT .5

epifluorescence ב-Reflected עם נורת מתלהליד ליצירת אור EXFO ב-Reflected

בשיטה זו אותה עדשה נמצאת במסלול אור העירור וגם של הפליטה (Reflected). כך המערכת יותר מכוונת וגם רוב העירור עובר את הדוגמא ולא חוזר לכיוון העדשה והדטקטור, כך שהשיטה יעילה יותר לעומת Transmitted

Biomedical Core Facility Www.medicinelab.org.il

מסלול האור

אור המופק ע"י הלייזרים הממוקמים ביחידת הלייזרים עובר בסיבים אופטים אל יחידת ה-scanhead, האור מועבר ע"י מערכת מראות המכוונות אותו אל מראה דיכרואית ראשונית. קרן הלייזר ממשיכה ועוברת דרך מראות המניעות אותה על הצירים X ו-Y המאפשרות את סריקת התכשיר.

> אור העירור עובר דרך העדשה ומגיע אל התכשיר. כתגובה מתאפשרת פליטה מהתכשיר. הפוטונים הנפלטים כתגובה לעירור עוברים דרך העדשה אל ה-scanhead: דרך המראה הדיכרואית הראשונית (מחזירה את אורכי הגל של קווי הלייזר ומעבירה רק את פליטת הפוטונים מהתכשיר) קרן האור ממשיכה אל חריר קונפוקלי ומשם פוגעת במראת ה- variable secondary ממשיכה אל חריר קונפוקלי ומשם פוגעת במראת ה- variable secondary יכולת העברה והחזרה של אור בטווח של 420nm- 630nm המקנה לה יכולת העברה והחזרה של אור בטווח של 420nm- 630nm המערכת אפשרת לבחור נקודת פיצול על ה-beamsplitter – כך שאור בעל אורכי גל הנמוכים מנקודת הפיצול יועברו אל גלאי PMT1 photomultiplier במראה בו וורכי גל גבוהים מנקודת הפיצול (short pass filter) יועברו ל – PMT2. נקודת הפיצול נקבעת על פי גובה במראה בו פוגעת הקרן. ניתן לשלוט על מיקום הפיצול בתוכנה. לפני כל PMT ישנו גלגל פילטרים הניתנים לבחירה בתוכנה ומאפשרים הצרה נוספת של טווח אורכי הגל המגיעים ל-PMT.

> כל פוטון שפוגע ב-PMT פוגע בעצם בפוטוקתודה אשר מפיקה כתוצאה אלקטרון. הזרם החשמלי (אלקטרונים) מוגבר ומועבר לאחר הגברתו אלanalog to digital converter. הזרם נדגם ומועבר למספרים דיגיטלים אותם המחשב והתוכנה יכולים לעבד. התוכנה תבטא את הנתונים כתמונה המורכבת מפיקסלים כאשר כל פיקסל מייצג את כמות הפוטונים שנפלטו באותו איזור בכל יחידת זמן. הנחת העבודה היא שערכו של כל פיקסל פרופורציוני לכמות הפוטונים הפוגעת בגלאי (PMT) ופרופציונית לעצמת הפליטה מאותו איזור.

Imaging and Microscopy Center Biomedical Core Facility The Ruth & Bruce Rappaport Faculty of Medicine Technion-Israel Institute of Technology www.medicinelab.org.il

umedical Core Facility

wide-field היתרונות/הבדלים בין מיקרוסקופ הקונפוקלי לעומת מיקרוסקופ

בשתי המערכות מעוררים לכל עובי הדוגמא. ב-wide-field דוגמים סיגנל פלורוסנטי מכל עובי הדוגמא, דבר הגורם לטשטוש בתמונה בשל scattered light משכבות אופטיות שונות בדוגמא.

במערכת קונפוקלית העירור נעשה גם לכל העומק הדוגמא, אך דגימת הפליטה מתקבלת מחתכים אופטיים של הדוגמא. יתרון זה מאפשר קבלת מידע מדויק וייצוג מפורט ונקי של חלקי התא. בנוסף יתרון זה מקנה את קביעת מיקומם המדויק של סיגנלים פלורסנטים מעומק התא או הרקמה ולכן ניתן לענות על שאלות ביולוגיות רבות כגון קולוקוליזציה/טראנסלוקציה.

עובי החתך הנדגם נקבע על פי קוטר החריר. קוטר החריר קובע את עוצמת הסיגנל ותלוי בשאלה הביולוגית ובאיכות הצביעה.

סוג הארה: לייזר בקונפוקל לעומת מנורת מטל-הליד ב- wide-field. ללייזר יתרונות בולטים: קו עירור קוהרנטי, עם אורך גל מוגדר, עוצמה חזקה, אפשרויות סריקה מגוונות.

Imaging and Microscopy Center Biomedical Core Facility The Ruth & Bruce Rappaport Faculty of Medicine Technion-Israel Institute of Technology www.medicinelab.org.il

עבודה

סדר הדלקת המערכת

סדר הדלקה וכיבוי המערכת קבוע וחשוב מאוד לשמר תקשורת בין רכיבי המערכת. הוראות עבודה נמצאות ליד המיקרוסקופ.

- הדלק פס שקעים מס' 1
- הדלק פס שקעים מס' 2.
- הדלק את ספק הכוח של השולחן המנ
- סובב את המפתח של יחידת הלייזרינ
 - הדלק מחשב (5)
- הדלק את מנורת המתלהליד (6) עוצמ הכוח של נורת המתלהליד.
 - כניסה למחשב:
 - Multilabs :User o
 - 123456 :Password o

Imaging and Microscopy Center
 Biomedical Core Facility
 The Ruth & Bruce Rappaport Faculty of Medicine
 Technion-Israel Institute of Technology
 www.medicinelab.org.il

תוכנה

יש לבצע הזמנה בטרם מועד דרך מערך ההזמנות של היחידה https://tech-mbookit.medicine.technion.ac.il

כדי להפעיל את תכנת Zen 2010 הכנס לחלון BookltLab והפעל את הזמנתך.

בתוכנה קיימים 2 מצבי עבודה:

- . Image Processing עיבוד נתונים קיימים
 - רכישת נתונים חדשים Start System

יש לבחור Start System ולחכות להעלאת התוכנה. בשלב זה אין לגעת במערכת עד העלאת התוכנה במלואה.

Bookit 2.67		TLA AGEMENT SOLUT	
Confocal LSN User Name: Password:	1 700 Upr	ight Mic	roscope
	Login	le p	11
Oetails:			

? ×
Image Processing

התוכנה מחולקת לשלושה חלקים עיקריים

, איזור שמאלי – **בקרה**

איזור מרכזי **– התמונה**,

איזור ימני – **ניהול הקבצים.** ניתן לשנות את גודלם של החלונות ע"י . Workspace zoom הזזת מחוון ה-

Imaging and Microscopy Center **Biomedical Core Facility** The Ruth & Bruce Rappaport Faculty of Medicine Technion-Israel Institute of Technology

Ocular, Acquisition, Processing, Maintain בקרה - מחולק לארבעה כלים:

להסתכלות דרך העיניות Ocular

שליטה על חלקי המיקרוסקופ השונים. יש ללחוץ על Online כדי ששינויים בחלון ה-<mark>Ocular</mark> יתבצעו בפועל בזמן אמת. ב-Offline המערכת במצב רכישת תמונה. לפני הסתכלות בדוגמא יש להכניס את בורר העיניים/לייזר בצד ימין של המיקרוסקופ פנימה.

Transmitted יצירת אור

יש לפתוח את תריס אור העברה (Transmitted) למצב ON ולכוון את עוצמת האור דרך התוכנה או דרך המיקרוסקופ. בצריח ה-reflector יש לבחור פילטר None או Rnalyzer module DIC ACR יש לבחור פילטר או דרך למיקום הנכון לפי העדשה ולפי שיטת הקונטרסט. יש לכוון את הקונדנסור (גלגלת מתחת ל-Stage) למיקום הנכון לפי העדשה ולפי שיטת הקונטרסט.

Condensor	Contrast	Objective
Н	Brightfield	all objectives
1	Phase	x10
I	DIC	x10
2	Phase	x20
II	DIC	x20 x25
3	Phase	x60, x100
	DIC	x40, x63, x100
D	Darkfield	

70 Ocular	Acquisition	Processing	Maintain	
Online	♀ Offline	Fluorescen	ce Shutter On	Shutter Off
Configuration	er er	P	19	
Assign	6	BFP DAP	N GFP	RFP
II Ocular				
Ocular				2

Imaging and Microscopy Center Biomedical Core Facility The Ruth & Bruce Rappaport Faculty of Medicine Technion-Israel Institute of Technology www.medicinelab.org.il

Differential Interference Contrast - DIC

שימוש בקיטוב של האור ליצירת ניגודיות בעזרתו ניתן לראות מבנים תלת ממדיים יותר ותצורה טובה יותר. דרושים 4 רכיבים במסלול האור, 2 לפני הדוגמא ו-2 אחרי הדוגמא:

- polarizer מכוון ל-°0
- numerical aperture פריזמת DIC בקונדנסור תלוית
 - עדשה בעלת פריזמת DIC
- Analyzer module DIC ACR) Reflector בצריח ה-Analyzer

יש להשתמש בזכוכית נושא, זכוכית מכסה או כלי אחר עם תחתית מזכוכית

מיקום גלגלת קונדנסור	NA	הגדלה
DIC II	0.8	X25
DIC III	1.3	X40
DIC III	1.4	X63

Kohler תאורת

יש לבצע תאורת Kohler לכיוון הקונדנסור ותאורה לישדה הדוגמא:

- 1. העבר גלגל פילטרים של קונדנסור ל-H או ל-DIC המתאים לעדשה
 - 2. פקס על הדוגמא
- 3. סגור field stop (ממוקם בצד ימין של המיקרוסקופ F ונשלט ע"י שני כפתורים לפתיחה וסגירה).
 - 4. הרם או הורד את הקונדנסור בעזרת הגלגל כדי לפקס את המצולע
 - 5. מרכז את המצולע בעזרת שני הפינים הכסופים
 - 6. פתח את ה-field stop עד קבלת גבולות המצולע בכל שדה הראיה
 - 7. כוון את ה-field aperture בקונדנסור לשיפור התמונה (70%≈ פתוח).

Reflected יצירת אור

יש לפתוח את תריס התאורה ה-Reflected, יש לבחור פילטר מתאים, ניתן לשלוט על עוצמת התאורה באופן ידני במנורת המתלהליד (העוצמה משתנה בקפיצות של 12%).

דוגמאות לצבענים	פליטה	מראה דיכרואית	עירור	קובית פילטר	עמדה
Cy2, GFP, Alexa 488	BP 525/50	FT 495	BP 470/40	Zeiss Filter set 38	Set38
Cy3, Rhodamin, Alexa 561	BP 605/70	FT 570	BP 545/25	Zeiss Filter set 43	Set43
PI, Cy5	BP 630/75	FT 585	BP 560/40	Zeiss Filter set 45	Set45
DAPI, Hoechst	BP 445/50	FT 395	G 365	Zeiss Filter set 49	Set49
				DIC Analyzer	Nalyze
				ריק	None None

Imaging and Microscopy Center **Biomedical Core Facility** The Ruth & Bruce Rappaport Faculty of Medicine Technion-Israel Institute of Technology

לרכישת תמונה Acquisition

העלאת תוכנת עבודה דרך אחת האפשרויות הבאות:

- העלאת תוכנת עבודה קיימת מרשימת תוכנות עבודה שמורות.
- 2. **Reuse** פתיחת תמונה שנרכשה בעבר ולחיצה על ה- Reuse הממוקם בחלון התמונה למטה בחוצץ Dimensions. גורמת לחומרה ולתוכנה להישתנות לפי הגדרות אותה התמונה.
 - 3. Smart Setup יצירת תוכנית עבודה חדשה בחלון שנפתח בוררים מרשימת הצבענים את הצבענים איתם אנו עובדים המערכת מייצרת 3 אפשרויות עבודה Fastest, Best Signal, Best compromise בכל אפשרות המערכת מדגימה את בניית הערוצים (סריקה טורית ו/או סימולטנית) המהירות, רמת הביטוי ומידת החפיפה בין עקומות העירור והפליטה של הצבעיים הצבענים השונים. לאחר בחירת האפשרות הרצויה יש לסמנה וללחוץ על Apply.

Ocular	Acquisition P	processing	Maintain					
Configuration Andrey DCF Mito bf dapi								
	•	ē	œı	ō				
New	Auto Exposure	Live	Continuous	Snap				
2-Stack Time Series Bleaching Tile Scan Positions Regions								
Setup Ma	nager							
U Laser	ing Setup		1	Show all				
E Light	Path		4	Show all				
Online Ac	a Online Acquisition							
🕨 🛥 Acqu	isition Mode		\checkmark	Show all				
A Chan	nels		1	Show all				
▶ ⁺ ₊ + Focu	S		۵	Show all				
Stage	9			Show all				

יצירת תכנית

. Acquisition– בחלק העליון של חוצץ ה Show manual tools יש לסמן את אפשרות

יש לפתוח את החלונות הבאים:

Light path ו-Imaging setup יש לבחור ב- Setup manager בחוצץ

Show all ולסמן בחלונות שנפתחו את אופציית

lmaging setup - בחלון זה ניתן לראות ולשנות את סדר סריקת הערוצים, להוסיף ולהוריד ערוצים.

Light path – בחלון זה מוצג מערך האור של כל ערוץ סריקה ודיאגרמת הפליטה של הצבען הכוללת את קו הלייזר (קו אנכי) ונקודת ה Split ע"י ה – Beamsplitter, אחוז הלייזר, המראה הדיכרואית הראשונית, PMT שנבחר, ופילטריי פליטה – כל רכיב, חוץ מהמראה הדיכרואית הראשונית, ניתן לשינוי.

במידה ורוצים ליצור גם תמונת Transmitted יש לבחור ב-T-PMT באחד הערוצים רצוי בעל אורך הגל הארוך ביותר.

Imaging and Microscopy Center Biomedical Core Facility The Ruth & Bruce Rappaport Faculty of Medicine Technion-Israel Institute of Technology www.medicinelab.org.il

Cy5, Cy3, Cy2, DAPI דוגמא של תכניות רכישה בסיסית לצבענים כגון

TOPRO3, Cy3, Cy2 דוגמא של תכניות רכישה בסיסית לצבענים כגון

רכישת תמונה

בחוצץ Online acquisition יש לבחור ב- Acquisition mode + Channels. Acquisition mode – חלון זה מכיל את נתוני הסריקה:

Objective – ניתן לברור עדשות גם מחלון זה.

- ניתן לברור עדשות גם מחלון Objective – ניתן לברור עדשות גם

Scan mode

.XY סריקת קו בודד בצירים Line

- סריקת כל הדוגמא – Frame

– יש ללחוץ על איקון X*Y ולבחור את גודל התמונה הרצוי. – Frame size

הירות סריקה איטית איכותית יותר אך חשיפה של הדוגמא ללייזר פוגעת בה. – Speed

חזרות על הסריקה (מיצוע) מפחיתות רעש אלקטרוני אקראי – Averaging

Number – מספר חזרות

bleaching מתאים לדוגמאות מקובעות, גורם לפחות Frame – Mode

Line מתאים לדוגמאות חיות.

Method – בחירת מיצוע או סכימה של החזרות על אותה סריקה

אוני אפור. 12 bit (256=) 2⁸ − 8 bit − Bit Depth ב¹² − 12 bit (256=) 2⁸ − 8 bit − Bit Depth מתאים לקולוקוליזציה ואנליזה כמותית. הקבצים משמעותית גדולים יותר.

כיוון סריקה – בכיוון אחד או הלוך חזור – Direction

הלוך חזור מתאים לסריקות מהירות (תאים חיים או דוגמאות שעוברות bleaching מהיר) ועלול לגרום להטיה בציר שיש לתקן אחר כך.

Scan Area

Zoom – מדובר בזום אופטי שהופך בהגדלות גדולות לדיגיטלי. בעדשה של 60 – סדר גודל של זום 3 כבר דיגיטלי, בעדשה-25 סדר גודל של זום 4

ניתן לשנות את זווית הסריקה וע"י כך להטות את האוביקט לכיוון הרצוי

תנאי סריקה מומלצים

סריקה ע"י	מספר פיקסלים	מספר חזרות	מהירות סריקה	
Continuous	512x512	1	8	סריקה מקדימה
Snap	1024x1024	2-4	6	תמונה בדידה
Start Experiment	1024x1024	2	7	Z-stack

						WARD RANGE OF STOLE
Objective	EC Plan	-Neofluar	10x/	0.30 M27	,	
Scan Mode	Frame					
Frame Size	X 512	Ĵ		(*Y	Υţ	512
Line Step	1	-				Optima
Speed			-0	9	•	Max
Pixel Dwell	1.58 µsec	Scan 7	Fime	968.14	msec	
Averaging						
Number	1		E	Bit Depth	8 Bi	it
Mode	Line		C	irection	>	
Method	Mean					
HDR						
Scan Area						
		Image S	ize:	638.9 µr	n x 63	38.9 µm
		Pixel Siz	e:	1.25 µm		
	_•	Pixel Siz ↔ _	:e: (1.25 µm	1 D.0	
		Pixel Siz ↔ – Ì _=	:e: ((1.25 µm) () (0.0 0.0	
		Pixel Siz ↔ – ↓ – ☉ _=	:e: (((1.25 µm 	0.0 0.0 0.0	
		Pixel Siz ↔ – ↓ – CO – Zoom ¶	re: ((1.25 µm	1 0.0 0.0 0.0 1.0	
		Pixel Siz ↔ – Ĵ – C5 – Zoom Ĵ	xe: (((1.25 µm 	0.0 0.0 0.0 1.0	

_ מכיל את נתוני כל הערוצים ומאפשר שינויים.

יש לקבוע תנאי דגימה אופטימלים לכל ערוץ בנפרד. את הערכים יש לקבוע במהלך סריקה מקדימה על דוגמא חיובית (positive control) לאחר קביעה זו יש לבדוק את הבקורות השליליות באותם תנאים.

ב-Channels מבטלים סימון כל הערוצים פרט לאחד, אותו צריך לסמן ע"י לחיצה נוספת לקבלת צבע בהיר יותר. בחלון התמונה יש ללחוץ על צבע הערוץ בתחתית התמונה כדי לשנות את הצגת הנתונים לגווניי אפור כאשר פיקסלים ברוויה ייוצגו באדום לעומת פיקסלים שחורים בכחול.

> קביעת אחוז הלייזר. יש להשתדל לעבוד באחוז לייזר נמוך ככל שאפשר למניעת פגיעה בדוגמא. Pinhole - גודלו קובע את גודל ה-optical slice. תלוי בשאלה הביולוגית ובאילו מבנים רוצים להבחין בדוגמא.

> > µm section) Optical slice צריך להיות זהה בכל הערוצים.

600 הגברת סיגנל ע"י PMT. אין לעבור את Gain (Master)

סף דיטקציה, מתחת לערך הדדיטקציה המצוין ערך הפיקסל אפס (שחור) ומעל לערך מקסימאלי הסיגנל – Digital Offset gain- ברוויה. ערכי ה-offset תלויים בערך ה

Digital Gain – הוספת הגברה לתמונה לאחר רכישתה. בדרך כלל אין צורך להשתמש.

Channe	ls			✓ Show a	all 🗹
Tracks		Channels			
Track 4		Cy5] -
Track 3		A555			•
Track 2		A488			•
Track 1		DAPI			•
			Select all	Unselec	t all
Lasers 405 A 639 nm Pinhole 1.24 Airy Ur Cy5 G	488 555 	5 639		- 9.0 - 68.7 1 AU 1	÷ max

Ruth & Bruce Rappaport Faculty of Medicine

שמירת קבצים

לאחר רכישת תמונה יש לשמור אותה בתיקיה אישית בתוך תיקיה ע"ש מנהל המעבדה (PI).

הנתונים שמורים ב- D:\LSM 700 USERS DATA ע"פ שם PI, שם משתמש, תאריך.

🔿 🖓 – 🚺 D:\LSM 700 U	ISERS DATA	
File Edit View Tools	Help	
🄄 Organize 👻 🔠 Views	👻 🕙 Burn	
Favorite Links	Name	Date modified
Documents	A - H (9)	
Pictures	鷆 ami	11/5/2014 2:30 PM
	🌡 Asya	8/3/2014 8:30 AM
Music	鷆 Bengal	8/3/2014 11:13 AM
Recently Changed	Dori Derdikman	10/23/2014 4:50 PM
Searches	📕 Edith	12/9/2014 12:09 PM
🔰 Public	Finberg	9/29/2014 12:46 PM

Imaging and Microscopy Center Biomedical Core Facility The Ruth & Bruce Rappaport Faculty of Medicine Technion-Israel Institute of Technology

ב-XY באמצעות התוכנה. Stage – הזזת ה

– הזזת ה-Stage בציר ה-Z באמצעות התוכנה.

סימון קאורדינטות בתכשיר למשל תוך עבודה עם עדשה בעלת הגדלה קטנה, אשר ניתן לחזור אליהן במעבר לעדשה בעלת הגדלה גדולה יותר. מגיעים למקום הרצוי ולוחצים על Mark

בחירת המיקום מתוך הרשימה שנוצרה ולחיצה על MoveTo מביא את Stage למיקום הרצוי כפי שנקבע

Multidimensional Acquisition

(Z-stack) Z-רכישת תמונות בציר ה

יש לסמן את אפשרות Z Stack לקבלת חלון ה-<mark>Z-stack בחוצץ</mark> Multidimensional Acquisition

יש לסרוק בערוץ אחד, במהירות גבוהה ללא מיצוע תוך שינוי הפוקוס עד מציאת גבול עליון של הדוגמא וללחוץ על Set First וגבול תחתון של הדוגמה וללחוץ על Set Last. יש לקבוע את האינטרוואל. ניתן להשתמש בהמלצת המערכת ב-Optimal. לחיצה על קביעה זו תייבא את האינטרוול האופטימלי שהוא חצי מעובי ה-optical slice שנקבעת ע"פ גודל החריר הקונפוקלי.

ניתן בחלון זה ללחוץ על חוצץ Optimize sectioning and step וע"י לחיצה על איקון Match pinhole ליצור התאמה של עובי החתך בכל הערוצים ואח"כ קביעת אינטרוול אופטימלי לכולם.

לרכישת החתכים בחר במהירות 7 או 6, הוסף מיצוע וגודל frame ולחץ על Start Experiment.

# Multidimensional Acquisition						
🕨 🗏 Z-Stack	🗸 Show all 🛃					
• Time Series	🗆 Show all 📝					
🕨 🎫 Tile Scan	Show all					
Positions	🗉 Show all 🚺					
i Information On Experiment	🗆 Show all 🚺					
Muto Save	Show all					

Ocular	Acquisition	P rocessing	پو Maintain			
Configuration Reymond S cy3 FITC dapi ★ Smart Setup ✓ Show manual tools						
	•	© 1	@ (ō		
New	Auto Exposure	Live	Continuous	Snap		
✓ -Stack ✓ Time Seri Bleaching	21 Slic es 10 Imag	es ges				
 ✓ Tile Scan ✓ Positions ☐ Regions 	5 x 5 Ti 1 Posit	les ion	Start Ex	2.56 GB		

Time Series

יצירת סדרת דגימות לאורך זמן ע"י קביעת אינטרוול וכמות המחזורים.

יש לסמן את אפשרות Time Series לקבלת חלון ה-Time Series בחוצץ Multidimensional Acquisition.

לאחר קביעת הפרמטרים יש ללחוץ על Start Experiment.

Ocular	Acquisition	A Processing	للمن المن المن المن المن المن المن المن			
Configuration Reymond S cy3 FITC dapi * Smart Setup * Show manual tools						
	•	© ,	@ I	ō		
New	Auto Exposure	Live	Continuous	Snap		
New Auto Exposure Live Continuous Snap ✓ Z-Stack 21 Slices ✓ Time Series 10 Images Bleaching 5 x 5 Tiles ✓ Positions 1 Position ☑ Regions Start Experiment						

👻 🕘 Time Se	eries				1	Show all	Ľ
Cycles – Interval 🌔	0		[1	0.0	€) €) (m	ISEC	
Interval Tim	e						
Interval Time		not defined				e ×	
+ .							
Jerker 🐨							
Marker		not defined				e ×	
+ .							
🕣 Start							
Mode	Manual			Pre-	Scan		
Trigger Out	None						
😴 End							
Mode	Manual						
Trigger Out	None						
Pause							

Tile scan

סריקת מספר שדות צמודים וחיבורם לקבלת תמונה נרחבת של התכשיר ברזולוציה גבוהה.

יש לסמן את אפשרות Tile Scan לקבלת חלון ה-Tile Scan בחוצץ Multidimensional Acquisition.

Y-ו X יש להביא את דוגמא למרכז האזור ולקבוע מספר שדות לצירים

💌 🎛 Tile	Scan			✓ Show all	Ľ
Horizontal Vertical	Tiles 5 5	Pixels 2560 2560	Size 1600.43 µm 1600.43 µm		
Rotation	0.3890 🗘	•			
	Sc	an overview	image		

Imaging and Microscopy Center Biomedical Core Facility The Ruth & Bruce Rappaport Faculty of Medicine Technion-Israel Institute of Technology www.medicinelab.org.il

Positions

ניתן לסמן מיקומים שונים בתכשיר לחזרה אליהם או לסריקה של כמה שדות בו זמנית.

יש לסמן את אפשרות Positions לקבלת חלון ה-<mark>Positions</mark> בחוצץ Multidimensional Acquisition.

לחיצת Add מסיף את מרכז השדה הנוכחי לרשימת Positions. ניתן לחזור למיקום מוגדר ע"י Move to.

ניתן לקבוע Position גם ע"י Mark בחלון ה-Stage.

בלחיצת Positions בחוצץ Dimensions מקבלים צלב על התמונה הנוכחית, הזזה ולחיצה על הצלב ימרכז את ה-Stage למרכז הצלב.

		52	Per ave
Dimensions Display	Overlay		
Zoom -‡	100% - 190%	+ Q_	Q‡ 🕛
Channels Merger	d Ch2-T1 Ch1-T2 Reuse 5 Crop) Positions	Stage

Positions		1	Show all	4	
Positi	on List	Sample Carrier			
Number 1	x [µm] -29211.800	y (µm) 2374.000	z (µ 34.2	ım] 251	
Add	Remove	Remove All		Move to	
			Load	Save	
Auto-Focus Off					
Scan overview image					

Regions of Interest - ROI

יש לסמן את אפשרות Regions לקבלת חלון ה-Regions בחוצץ

Multidimensional Acquisition

ניתן לסמן חלקים מהשדה ולבצע רכישת תמונה רק עבור מכלול שדות אלו.

אם מסומנים ROI, כל רכישת תמונה (בדידה, Time Series ,Z section) תחול על כל ה-ROI. ה-ROIs.

הסריקה מתבצעת על כל ציר ה-X ומוגבלת בציר ה-Y לפי השדות המסומנים. לסריקה אך ורק האיזורים המסומנים כ-ROI יש לסמן Fit frame size to bounding rectangle of regions.

קביעת ROI חוסך זמן סריקה ומשמש לסריקת תהליכים פיזיולוגיים, להגנה של אזורים מחוץ לסימון משהייה של לייזר, ל--photobleaching ל-FRAP ל-photobleaching וסוגי אנליזה.

ניתן גם לקבוע zoom ו-rotation של השדה הנסרק ע"י לחיצה על Crop בחוצץ Dimensions. על התמונה בסריקה מופיע ריבוע אותו אפשר להזיז, לשנות גודלו וזוית.

Ocular	Acquisition	P rocessing	پ ∠ Maintain			
Configuration Andrey DCF Mito bf dapi 🗃 🗷 × 🛪 Smart Setup 🗹 Show manual tools						
	•	© 1	@ I	ō		
New	Auto Exposure	Live	Continuous	Snap		
Z-Stack Time Series Bleaching Tile Scan Positions Regions						

💌 🖂 R	egions				✓ Show all	Ľ
K		200		Delete	Hide	
#	1	Гуре	Acquisition	Bleach	Analysis	
1		0	\checkmark			
2			\checkmark			
1100						
Center	x	-26				
Center	Y	-311				
Width		306				
Height		180				
Line w	idth					
Color						
Color r	node	Automatic	assignment			
Creatio	on Mode	Switch to :	selection mode	-		
🔲 Fit fr	ame size	e to bounding	rectangle of reg	jions		
Zoor	n Bleach	i (fast, less a	ccurate)			
Show	w numbe	rs				
Load	1	Save				

גיבוי נתונים

<mark>disk on key-אין להשתמש ב</mark>

גיבוי אוטומטי אל שרת היחידה מתבצע כל לילה.

יחידת הצב"מ אינה אחראית על גיבוי הנתונים. את הקבצים יש להעתיק בהקדם משרת היחידה למחשב המעבדה. <mark>חשוב – השרת/המחשבים במרכז תשתיות ביורפואי אינם מהווים גיבוי.</mark>

סגירת המערכת

- נא לצאת מהתוכנה.
- לא לשכוח לבצע OFF להזמנה בחלון BookltLab.
- נא לבדוק אם המשתמש הבא מגיע בשעה הקרובה. במידה ולא ניתן להמשיך בכיבוי.
 - הכיבוי נעשה בסדר הפוך מההדלקה

